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In this paper we treat two special Hermite-BirkholT interpolation problems in the
space of spline functions and develop some recursion relations for the calculation
of the solutions of these interpolation problems. Furthermore we show that these
formulas can be used for the continuous approximation of the solution of a
nonlinear two-point boundary value problem. i:' 1989 AcademIC Press, Inc.

1. INTRODUCTION

Let [a, bJ be a finite real interval, N, m posItive integers, m? 3..
h = (b - a)/(N + 1), and X j := a + ih (i = 0, ..., N + 1). Denote by Sm(L1) the
space of polynomial spline functions of degree m with simple knots x,
(i = 1, ..., N). The B-splines associated with the given knot partition LI are
defined by

1 m+l (m+ 1)
Bmj(x):=--, I (-1)" (X-XI+vr~.

, hm
. nl. \' = 0 \'

In various topics of numerical analysis the following Hermite-Birkholf
interpolation problem arises. Given real data .ri' M j (i = 0, ..., N + 1), a
spline function 5 is looked for such that

SESm(LJ)

s(x;) = Yj

s"(xj)=Mj.

(i = 0, ..., N -l- 1). (1.J )

'" This paper is part of my doctoral thesis [4].
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The interpolation. problem (1.1) is not uniquely solvable for all mE N. For
example, if m is even then

N

So(X)= I (-l)iBm,i(x)
i= -rn

is a nontrivial nullspline, i.e., so(xJ = s~(xJ = 0 (i = 0, ..., N + 1).
Therefore we also consider the problem

(1.2)

s"(xJ = M i (i = 0, ..., N + I) (1.3)

where J'i' M i, and y~n - 1) are given real data.
In Section 2 we give necessary and sufficient conditions such that

problem (1.1) (( 1.3) respectively) is solvable. The main purpose of this
paper is to develop some recursion relations which are useful in order to
construct the solutions of (1.1 ) and (1.3), respectively. These recursion rela
tions generalize the corresponding formulas of Usmani [7] and Usmani
and Warsi [8], who have developed it for the case m = 5.

2. ON THE SOLVABILITY OF A SPECIAL HERMITE-BIRKHOFF PROBLEM

We introduce the following notations:

(v = 0, ..., m - 1; i = - m, ... , N; 1= 0, ..., m + 1)

a~m):= (m-2)! h2b~,,1+1

elm) := m! bm,l+ 1

(2.1 )

(2.2)

s:= {(m - 1)/2
(m - 2)/2

if m is odd
if m is even.

(2.3 )

The polynomials Pm' qm E n 25 are defined by
25

Pm(x):= L elm) X'

1=0

25

qm(x):= L a}m)x'.
'=0

(2.4 )

(2.5)

Note that a~m) = c}m-2) - 2el":11) + el1112 2 ), hence qm(x) = (x-1)2 p m_2(x).
In [4] we were able to show that all zeros of qm (and thus all zeros of Pm)
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are real. Denote by Pm={f.1o(m), ... ,f.125-1(ml} and Qm={1';'2(m), ... ,
A2s_1(m)} the set of zeros of Pm and qm, respectively. We remark that -1
is a common zero of Pm and qm if m is even.

The next theorem gives criterions for the solvability of the Birkhcf:
problems (1.1) and (1.3):

THEOREM 2.1. (1) Let m?;: 3 be odd and so chosen that Pm n Qm = 0
and N?;: m - 3. Then the Hermite-Birkhoff problem (1.1) is uniquely
solvable, if and only if

m 111

L bm.IMi+ l = L b';".IYi+1
l~ I l~ I

(i = -1, ... , N - In + 1l.

(2) Let m?;:4 be even, PmnQm={-l}, and N?;:m-4. Then
problem (1.3) is uniquely solvable if and only if

m-l It m-l tJ

I I (-lV-O"b;;"O"Yi+f.I= I I (-l)f.I-O"bm."Mi+f.I
J1=1 a= 1 j.l= 1 cr= 1

(i = - 1, ..., N - m +2).

A proof of this theorem can be found in [4, pp. 54-57].

Remark. If m ,,;; 9 then

Pm n Q", ={f-l} if m is odd

if m is even.

Thus in this case (1.1) is solvable if and only if m is odd and (1.3) IS

solvable if and only if m is even.

3. CONSTRUCTION OF SPLINE SOLliTIONS

In this section we develop some new recursion relations, which can be
used in order to construct the solutions of the Birkhoff problems (1.1) and
(1.3). Denote by

m

Pi(X) = I atAx - x;)"'-"
\·=0

(i=O, ... , N) (3.I)

the restriction of such a solution sESm(Ll) on the interval [X i ,X i + 1]. For
brevity we set

p)"l :=plVl(xJ (v = 0, ..., m - 1)

Pi:= plO) = p;(x i )
U= 0, ..., N). (3.2)
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First Case: m Odd

First we shall express the coefficients ail' (v = 0, ..., m; i = 0, ..., N) by the
numbers p~,.) (v = 0,2,4, ..., m - 1). If v is odd, then obviously

_ 1 (m-"J
a;,--( ),Pim-v.

(v=1,3, ...,m). (3.3 )

The other coefficients can be computed by the following lemma.

LEMMA 3.1. Let the coefficients Ck,l and Ck,O be defined by

CO,I = 1
1

c2, 1 = - 3!

CO,I C2.1 ck - 2.1
C -- - •.. ---
k,l- (k+l)! (k-l)! 3!

Then

__1_ 1,-1) (,-I)
ai,m-v- v!.h (CO,IPi+1 +CO,OPi )

Im-v-I
1 (' (m-I)+ ... + , Cm-vIPi+1v. '

(v = 1, 3, ..., m; i = 0, ..., N).

The proof of Lemma 3.1 can be easily carried out by expanding P~"11 on the
right-hand side in a Taylor series.

LEMMA 3.2. With the above introduced constants Ck,l and Ck.O the
following equations hold:

1 (,-I) (v-II (1'-1)h(c 0, I Pi + 1 + 2c0,0 Pi + CO, I Pi - 1 )

+ h(C2, 1 P j:"i I ) + 2c 2, 0 P ~ v+ I) + C2, 1 P~:"i I )

+ .. ,+ h"'- "-I(Cm_ 1',1 p~'~ll) + 2Cm_ \"opjm -1)

(v = 1, 3, ... , m - 2; i = 1, ..., N).
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Proof Because of P~':!I(Xi)=P;"}(;tJU= 1, ..., N) we have
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(r= 1, 3, ..., m-2). (3.4)

Now if the coefficients ai _ l •j and a i .j in (3.4) are replaced by the
corresponding terms in (3.3) then we obtain eq uations of the type

/zj-I(C. p,,'+j-I)+?d pl'+i-ll+d p',""-I-l')=O
J, I I + I - J.O I I. 1 I - I

O~j~m- ~'

je\en

(v=L3, ... ,m-2:i=1, .... Nl. (35)

It remains to show that

dl .] =ci. l , (j = 0, 2, ..., In - 1). (3.6 )

In order to prove dj • 1 = cJ• I we first remark that (3.5) is also valid after
interchanging cj . 1 and dj • l , because (3.5) can be applied on the "reflected"
spline s(x)=s(2x i -x). Subtracting both equations leads to

(v= 1, 3, ... , m-n (3.7)
O~i~ln-I'

) e\.en

where e
j
= cj ,1- di,l (j = 0, 2, ..., m - v).

Expanding (3.7) in a Taylor series at Xi-l it foUows that eJ=O. The
proof of di.O = ci.O can be carried out by induction on j: Obviously we have
do.O=-CO.l=CO.O' Assume that di - 2. O=Cj -2,t). By expanding (3.5) ic a
Taylor series again it follows that

(
2 i -

1 1 1 1)
- j!-2!(j-2)!-4!(j-4j!-"'-j! COl

1 1
= -ci,1 - 2' Cj _ 2,1 - .. , -~ CO. I = cj,o

. J.

which completes the proof of Lemma 3.2. I
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The equations of Lemma 3.1 and Lemma 3.2 can be used for computing
all coefficients aiv of Pi (i = 0, ..., N), if problem (1.1) is solvable.

EXAMPLE. For m = 5 we obtain the following formulas, which were
already developed by Usmani [7, p. 157]

7p(4) + 16p\4) + 7p(4)
r+l I ,-1

(3.9)(i= 1, ..., N).

=60(p~Z:1 +4p~2)+pl~\)/h2_360(Pi+I-2Pi+Pi_d/h4 (3.8)

P(4) +4(4) +p(4)
1+ 1 PI I-I

= 6(p~Z: I - 2p~2) + p~~ 1)/h2

Second Case: m Even

In this case it is not possible to express aiv as linear combinations of p;v)
(v even). Additionally one of the values p;v) (v odd; i=O, ...,N+l) is
needed. The following lemma contains an analogous statement like
Lemma 3.1 and can be easily proved by Taylor's formula.

LEMMA 3.3. Let i E {O, ..., N}. Then

(v = 0, 2, 4, "', m - 2, m - 1)

1 " hk-I (c p(v+k-l)+C p(v+k-l»)
ai,m-v=~ L. k,1 1+1 k,O I

1. O~k~m-\'-3
k even

hm- v-2
(

- (m-21 - (m-2»)
+--V-!- Cm- v-l,IPi+1 +Cm-v-I,OPi

hm - v - I

+ I Cm_.'Oplm- l
) (i=0, ...,N;v=1,3, ...,m-3)

v. '

a. =_2_(p(m-2)_p(m-2»)_~p(m-l)
1.0 m!h2 1+1 I m!h I '

where the coefficients Ck, I, Ck + 1.0' and Ck,O are recursively defined by

_ _ Ck _ 2. I co, I
Ck+ 1.0= -Ck,1 --3-!--, .. - (k+ 1)

(k=m-2, m-4, ..., 0).
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LEMMA 3.4. The following recursion relations hold:

Il~l(C p(v+k-l)+2c .p(,.+k-ll+ C p(,.+k-I»
k, I [+ I k.O [ k.1 [- I

a<:;k<:;m-3
keven

) <nl-v-2(- {m-2) ... , (m-2) P (m-2,)
Til Cm-,'-l,lpi+1 + fm-,.Pi + m~\'Pi-1

(\' = 1, 3, ... , m - 3; i = 1, ,.., N)
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(m-1)+ rm~ll_~( (m~2)_ Im-2)_o
Pi pi~1 h Pi pi-1-

where Ct.,. := Cv.a, Pv := i'v ~ 1.1 + 2c".a,

(i = 1, ..., N + 1), {J.lOl

(

2,'-k-l 2 \
}',.:= - L ('-k-1)' Ck.! + (,_~ _1)1 ck,a I

a<:;k<:;v-3 \ . \ ( . /
k even

-2i;"_I,I-2cv,a (\I = 3, ..., m - 1).

Proof It can be carried out similarly as the proof of Lemma 3.2. We
consider the equalities p~"l.l(;\J = p~V)(xJ and replace the coefficients Gij by
the terms calculated in Lemma 3.3. Note that for any m the coefficients au
could be represented as linear combinations of p)'~\, p}k) (k = 0, 2, ...,) and
that in both cases (Lemma 3.1 and Lemma 3.3) the coefficients Ck~\"+l,l'

ck~V+I,a corresponding to p~~l' p~kl are the same for k~m-4. Thus in
the equations of Lemma 3.2 and Lemma 3.4 the same coefficients of p}t;.l'

p}k) occur for k~In-4. The coefficients cm~,'~l,l and cm-v,a corre
sponding to p~n;.12) and p~m-l) in (3.10) also follow from p~"l.I(X;) =P~")(Xi)

(v = 1, 3, ... , In - 1).
It remains to prove the equations for Ct.,., Pv, and }'.,. Replacing s by

six) := s(2x;<\) in (3.10) and taking into consideration that S~"l.l =
( -1r S~11 yields

L hk~ I(Ck.1 p;~~k-l)+ 2Ck.ap;,'+k -I) + Ck,l p;"--~k-l I)
O~k~m-3

keven

(v = 1, 3, ... , m - 3).

(3.1n

Subtracting (3.11) from (3.10) and dividing by hm~,'~2 we obtain

(cm_"_1.1-Pm_,)(p~n;.12)-P;':12»

(v= 1, 3, ..., m-3; i= 1, ..., N). (3.12)
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We now replace i by i + 1 and use Taylor's formula for splines of degree m:

k m - l - I

P (l) =p(l)+khp(l+l)+ ... + hm-I-1p(m-l)
l+k I I (m-I-l)! I

where p~";l" := lim,,, 0 sCm) (X i + v + e). Therefore

2( - Pm- v+ em _ v- I, 1 +!Y.m_ v+ Cm_ v,o) p~m - I)

(v=I,3, ...,m-3).

(3.14 )

Because of the uniqueness of the Taylor coefficients the terms in brackets
must be zero, hence

r:J.m~\,=Cm_\'.O

Pm- v = Cm-v-I,I + 2cm- v,0 (v = 1, 3, ..., m - 3).

In the same manner the equation for }'m _ v can be derived. Thus the proof
of Lemma 3.4 is complete. I

Given Pi and p~2) Lemma 3.4 can be used for computing all even
derivatives p~v) (v = 0,2, ..., m - 2). In order to calculate p~m -I) (i = 1, ..., N)
p~n-I) must be fixed. For example one can demand

P(m-I)= )' hk-m+I(C. p(k)+2c. p'(k)+C p(k»)o L... k,1 2 k,O 1 k,1 0
O~k~m-4

keven

+ (C m-2,1 p~m-2)+ (C m-2, 0 + 1) p\,"-2)

+ (cm-2,1 - 1) p&m-2»)/h.

EXAMPLE. m = 6. Let

6

Pi(X) = I ai,6_v(X-XY
v=o

(3.15 )
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Then the coefficients a'i of p; are given by
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1
Q·t=-F'

I, 120"

1
a·,=-5··

1.- 24 "
1 h h2

au = 6h (Mi + 1- M,) - 72 (5, + 1 + 55;) - 72 Fi :

1 h
a i.5 = h(Y; + 1 - y;) - 6(M i + 1 + 2M;)

h3 h4

+ 360 (4S;+ 1 + ll5J + 120 F;;

(i=0, ..., N).

The formulas of Lemma 3.4 are

1 . h .h(y;+, - 2)',+)';_1) -6" (M i +, + 4Af; + M,_ ,)

h3 h4

+ 360 (4S,+ 1+ 165, + 105;_ d + 120 (F; + F;_I) = 0 (3.16)

1 h
h(A'!i+I- 2Mi+ M i_d- 12 (5 j + 1 +85;+3Si_d

h1

--(F+F 1)=012 ' ,-

2 .h(Si- 5 ;_I) - (F;+ F;_I) =0 U= 1, ,." N). (3.18)

(3.19)

We insert formula (3.18) in (3.16) and (3.17) and obtain

1 hh(Yi+ 1- 2)'i+ )';-1) -6 (M;+ 1 + 4M;+ M i_;)

h3

+ 360 (45i+ 1+225;+45'_1)=0

1 h ~,h(M;+ I - 2M i + M;-I)-U (S,+ 1 + 1O~;+ 5,_ Ii =0

U=I, .... N), (3.20)
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Hence (see also Usmani [7, p. 160])

U= 1, ..., N).

(3.21 )

So and SN+I can be computed from formula (3.20). Fo is given by (3.15),

and F i (i = 1, ..., N) by (3.18). Thus all values for computing the coefficients
aij are known.

4. ApPLICATION TO SPLINE COLLOCATION

We give an example, where the Hermite-Birkhoff problems (1.1) and
(1.3) play an important role.

Consider the two-point boundary value problem

y"(x) = f(x, y(x))

y(a) = A

y(b) = B,

(4.1 )

where f is a real-valued bivariate function and A, B are given real numbers.
A frequently used method for solving (4.1) numerically is the method of
collocation: A spline function S E Sm(,d) is looked for such that

s"(xJ = f(x i , s(xJ)

s(a) = A

s(b) = B.

i=O, ..., N + 1

(4.2)

In [4] we showed that discrete values s(x;) (i = 0, ..., N + 1) can be
obtained by the solution of the nonlinear system of equations

m m

L b~,)"s(x,,+v_d= L bm."f(x,,+v_I,S(X"+I,_d)
,,=1 ,,~I

(v = 0, ..., N - m + 2)
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if m is odd and

m-l J.l

L L (_1)1'-0- b~,)Gs(xl'+V_d

rn -1 I'

= L L (-lV-o-brn,o-f(XI1+v_l,S(X!1+,_d)
Il~ 1 o-~ 1

(v = 0, ..>' N - m + 1)

211

if m is even. If U denotes the exact solution of (4.1), then the speed of
convergence is given by

max lu(xi)-s(xi)I=OWn),
l:E;i~l\r

where til = m if m is even and m= m - 1 if m is odd.
Now a global solution of (4.2) (i.e., the coefficients of a basis) can be

calculated by the methods of Section 3. Furthermore it can be shown that
the approximate solution S converges uniformly to the exact solution u of
(4.1) with the following rate of convergence:

max !u(V)(x)-s(v)(x)1 =O(h rn -"-l)
xE[a,b]

For details, see [4, p. 70-79].

CONCLUDING REMARK

(v = 0, .... m - 1).

It is quite easy to generalize the results of Sections 2 and 3 in order to
solve Birkhoff problems of the type

S(x i ) = Yi

S(k)(XJ = y~k)

where Yi' J'~k) are given real numbers and k is a given positive integer.
These generalizations can be used for solving boundary value problems of
the form y(k)(X) = f(x, y(x)). Special cases are treated in the papers of Isa
and Usmani [3] and Usmani [6].
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