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In this paper we treat two special Hermite-Birkhoff interpolation problems in the
space of spline functions and develop some recursion relations for the calculation
of the solutions of these interpolation problems. Furthermore we show that these
formulas can be used for the continuous approximation of the solution of a
nonlinear two-point boundary value problem. € 1989 Academic Press, Inc.

1. INTRODUCTION

Let [a,b] be a finite real interval, N, m positive integers, m =3,
h=(b—a)(N+1), and x;:=a+ih (i=0, .., N+ 1). Denote by §,,{4) the
space of polynomial spline functions of degree m with simple knots x,
(i=1,.., N). The B-splines associated with the given knot partition 4 are
defined by

m+1
Budd) = ¥ (=0 (" )

In various topics of numerical analysis the following Hermite-Birkhoff
interpolation problem arises. Given real data y,, M, (i=0,.,N+1}, a
spline function s is looked for such that

seS, (4)
s(x; )=y, (i=0,.,N+1). (1.3}
s"(x;)=M,

* This paper is part of my doctoral thesis [4].
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The interpolation problem (1.1) is not uniquely solvable for all me N. For
example, if m is even then

N

So(x)= Y (=1)'B, {x) (1.2)

is a nontrivial nullspline, ie., so(x;) =s5(x;)=0 (i=0, .., N+ 1).
Therefore we also consider the problem
s€S,(4)
s(x;)=y; s"(x;)= M, (i=0,.,N+1) (1.3)

S Dxg) =y

where y;, M,, and y§” " are given real data.

In Section2 we give necessary and sufficient conditions such that
problem (1.1) ((1.3) respectively) is solvable. The main purpose of this
paper is to develop some recursion relations which are useful in order to
construct the solutions of (1.1} and (1.3), respectively. These recursion rela-
tions generalize the corresponding formulas of Usmani [7] and Usmani
and Warsi [8], who have developed it for the case m =35.

2. ON THE SOLVABILITY OF A SPeCIAL HERMITE-BIRKHOFF PROBLEM

We introduce the following notations:
b},‘,’f, = B.(»;,)i(-xi+ 1), bm,l = bi,?,);,

(v=0,..m—1;i=—-m,..,N;[=0,...,m+1)

ay = (m—2) 1), 21)
C}m) =m! bm,/+l (22)
‘= (m—1)/2 %f m%s odd (23)
(m—2)/2 if miseven.
The polynomials p,,, q,, € n,, are defined by

Pl X) = i i x! (2.4)

i=0

2s
gu(x) = Y, afx (25)

/=0

Note that a{™ = c{" =2 —2c{™ TV + ™32, hence g,,(x)=(x— 1) P,, _,(x).
In [4] we were able to show that all zeros of ¢,, (and thus all zeros of p,,)
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are real. Denote by P, = {ug(m), .., us;_y(m)} and 0, = {1, iL:lm). .,
Ays—1(m)} the set of zeros of p,, and g,,, respectively. We remark that — 1
is a common zero of p,, and g,, if m is even.

The next theorem gives criterions for the solvability of the Birkhof
problems (1.1) and (1.3):

THEOREM 2.1. (1) Let m>3 be odd and so chosen that P,,nQ,, =
and Nzm—3. Then the Hermite-Birkhoff problem (1.1} is uniguefy
solvable, if and only if

mn

Z bpuiM,y = Z bt ¥ivi (i=—1L .. N-m+1)

[=1 [=1
(2) Let m=4 be even, P, nQ,={—1}, and N=m—4. Then
problem (1.3) is uniquely solvable if and only if

m—1 u m—1

z Z (—‘1)”765111,«}’”#: Z Z (_l)y_abm.o’[wii»u

u=1ec=1 u=1a=1
(i=—1,. ., N—m+2)
A proof of this theorem can be found in [4, pp. 54-57].
Remark. I m <9 then

& if misodd
{—1} if miseven.

P’?’E m Q"l = {

Thus in this case (1.1) is solvable if and only if m is odd and {1.3) is
solvable if and only if m is even.

3. CONSTRUCTION OF SPLINE SOLUTIONS

In this section we develop some new recursion relations, which can be
used in order to construct the solutions of the Birkhoff problems (1.1) and
(1.3). Denote by

pix)= Y anx—x)""" (i=0,.. N) (3.1)

the restriction of such a solution se S,,(4) on the interval [ x;, x;,]. For
brevity we set

P =px) (=0, m—1)

pii=p=plx;)
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First Case: m Odd

First we shall express the coefficients a,, (v=0, ..., m; i=0, ..., N) by the
numbers p!* (v=0,2,4,..,m—1). If v is odd, then obviously

———'pf-"‘"" (v=1,3,..,m). (3.3)
The other coefficients can be computed by the following lemma.

LemMA 3.1.  Let the coefficients c, , and c, o be defined by

1 1 1
co=1 52,1:_51 C4,1:_§+§!—2
o = Cou  Car o Ck-2a
k1 (k+1)! (k—1) 3!
Chom S0t G Ck-21
KOk (k=2)! 2! o

Then

1 o e
ai,mf\zv—"_h(co,lpﬁ':—l”—i_c()‘op:' 1))

h v+ 1) (v+ 1)

+W(52.1Pi+1 +Cr0Pi )

hm~v71A B
+ -+ V’ (cm—v,lpg":l»ll)

+Cm—\'.0pi'm_l))
(v=1,3,..,m;i=0, .. N).

The proof of Lemma 3.1 can be easily carried out by expanding p'), on the
right-hand side in a Taylor series.

LEmMMA 3.2, With the above introduced constants c,, and c,qo the
Sfollowing equations hold.

1 ;— V- v —
/“1 (00.1175':r 11)+2CO,OP§ b +Co,1l75>1“)

- i L 41
+h(co PV H 20,000 T H 0oy piY

i+1
+._.+hmfv—1(c (”171)4‘2(‘

{m—1)
m—v 1 Pivi

—\’.Opi
+Cpov P TV)=0 (v=1,3,.,m—2;i=1, .., N).
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Proof. Because of p!” (x,)=p!"(x,) (i=1, .., N} we have
o {m—j)!
>

—_— L pmeiey
[ Zo (m—j—v)! a

iy =va

in—y (‘K = 13 33 ey 112 _2) (3‘4;

Now if the coefficients @, _,; and a;; in (3.4) are replaced by the

corresponding terms in (3.3) then we obtain equations of the type

j—1 wt+j—1) bho+/= 1) ey — 1)y
Z b e piy +2d op, +d,, pi7, )=0
Ogjgm—v
Jeven

(v=1.3,.,m—2:i=1,..N.L {35
It remains to show that

d=c;, d,o=¢;o (j=0,2,..,m— 1) (3.6}
In order to prove d,,=c,, we first remark that (3.5} is also valid after
interchanging ¢, and d,,, because (3.5) can be applied on the “reflected”
spline §(x)=s(2x,— x). Subtracting both equations leads to

oo kT lept Y T —plt Ty =0 (v=1,3,.,m=2), (37}
O</<m~v
jeven

where ¢, =¢; , —d; (j=0,2, .., m—v).

Expanding (3.7) in a Taylor series at x; , it foliows that ¢,=0. The
proof of d; 3 = c; ¢ can be carried out by induction on j: Obviously we have
dyo= —Co 1= Cgo. Assume that d;, ,,=c, ., By expanding (3.5) ir a
Taylor series again it follows that

2 1 2t 1

o= —¢ _‘2—,5}—2,1 _ETC,fx,o

2 1 2} i N
~o=(5z)o - (Graza)o-

Ii

(y—‘ 1 1 i)

o - . — e — =l

TG o2 (-4 i)
1 1

=TTy G2 T T fon = Gio

which completes the proof of Lemma 3.2. §
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The equations of Lemma 3.1 and Lemma 3.2 can be used for computing
all coefficients a,, of p; (i=0, ..., N), if problem (1.1) is solvable.

ExampLE. For m=35 we obtain the following formulas, which were
already developed by Usmani [7, p. 157]
7P5“21 + 16p8" + 7P(f4—)1
=60(p3), +4p® +p2 )/h* —360(p; .\ —2p;+p._)/h* (38)
P+ 40P,
=6(p¥), =20 +pP )h*  (i=1,.,N). (3.9)
Second Case: m Even

In this case it is not possible to express a,, as linear combinations of p!"
(v even). Additionally one of the values p! (v odd; i=0,.., N+1) is
neceded. The following lemma contains an analogous statement like

Lemma 3.1 and can be easily proved by Taylor’s formula.

Lemma 3.3. Let i€ {0, .., N}. Then

(v)

D
Aim—y= ‘:' (v=0,2,4,..m—2,m—1)
1 k—1 (v+k—1) (v+k—1)
Aim-v=74 > A (7Y +CroPi )
Viosksm—v—3
k eve
hm‘vfz
~ AN (m—2)
+ V' (Cm—v—l,lps":l +cm—v~l,0pim )
hm—vfl
~ —1 . .
+= G opi" Y (i=0,..,N;v=1,3,..,m—3)
2

(m—2)

— (m—~2)) (m—1)
ai.O—m!hz (pi+1 _pim )— ”

ml’f ’

where the coefficients ¢, ;, ¢, ., and &, o are recursively defined by

- Cp Cp c
c,ﬂ:—Z( k=2t Ck-ar, o, Cod )

4! 6! (k+2)!
- Cp C
Cri10= —Cr1— k3!2'1— ”'—(kill)
~ ~ Cp_n C
C‘k.o:—ck,l—k—z!i ----- %l- tk=m-2,m-4,.,0).
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LemMA 34,  The following recursion relations hold:

k—1 k—1 c -k —1) v+ k-1
2 H T e PRV A 20000 T T e pU R
Og<ksm-3
keven
Cim—v_20% —2y ., ~2 (1 — 2}
Thm ’ (Cm~\‘—[.1p$"il }+)'m~vpim )+:8mf\‘p§';zl )
+h'n7V71(5771—\',0p§m71>+a'?‘l*"pg'f-l‘l)):()
(v=.3,.,m—3i=1,.,N)
(m—1}) (m—1) 2 (m—2) (m—2) ..
p; +p.7 —;(Pi T =piZ77)=0 (i=1.,N+1), (3.0}

where o, :=¢C, 4, B, :=¢,_ 1 +2C,0,

( 2"Ak—l N 2 \}

)= — c ¢

N A (s s Ryt S TRLLY
k even

—28,_,.,—2C.p (v=3,.,m—1)

Proof. It can be carried out similarly as the proof of Lemma 3.2. We
consider the equalities p{*),(x;)=p{"(x,) and replace the coefficients a;; by
the terms calculated in Lemma 3.3. Note that for any m the coefficients a;
could be represented as linear combinations of p*!,, p!® (k=0, 2, ...,} and
that in both cases (Lemma 3.1 and Lemma 3.3) the coefficients ¢, ., ,
Cr— v+ 1.0 corresponding to pt , p* are the same for k <m —4. Thus in
the equations of Lemma 3.2 and Lemma 3.4 the same coefficients of pi*/,.
p¥ occur for k<m—4. The coefficients &,,_,_,, and &,_,, corre-
sponding to pi" 7% and p!"~ " in (3.10) also follow from p!* ,(x,) = p'{(x;)
(v=1,3 .,m—1).

It remains to prove the equations for «,, f#,, and y,. Replacing s by
§(x):=5(2x,—x) in (3.10) and taking into consideration that "), =
(—1) s, yields

k—1 (v+k—1) (v+k—1) (v+h— 1)y
Z ey i +2¢.0P; " P )
O0<k<s<m~-3
k even

t—v—2 -2 N (m—2) 4 (m—2)
+hn ' (ﬁm—vpf":l )+/m—vpim +Cm7v71.1piil )

- hm—V— 1(“nz~vp$”:‘—? b + En1~v,0p§'m~ 1)) :0 (V = 13 35 ey FL— 3:
(3.1}
Subtracting (3.11) from (3.10) and dividing by #™ '~ ? we obtain

(m—2)

(5m~v—1.l—ﬁm—v)(pi+1 “Pf'fle)
b0 pVETV+ 28, 0PVt  pimTY)=0

(v="L13, ., m=3;i=1, .., N). (312}
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We now replace i by i+ 1 and use Taylor’s formula for splines of degree m:

) km~[71
) — ) L fhpU+D prm— =1, (m—1)
p1+k Di -+ pl + +(’n_1_1)! Pi
hm~1 k—1
o & (=) = Ry = 1) i, (313)
*v=0

where p!") := lim, o s (x;,, +¢). Therefore

2(_ﬁm—v+z’mfv—l,1+anz—\'+5n17\v,0)pf‘"171)
h

+§ (zamfv—3ﬁmfv+35:117\'71,1 +4Em7v.0)pi'm)
h R (m)
528 vt lp 1 )P =0 (r=13,.,m=3)

(3.14)

Because of the uniqueness of the Taylor coefficients the terms in brackets
must be zero, hence

o

am- v Ym—v0

ﬁmfvzgm-vfl,l+2Em7v,0 (V=1, 37 9m—3)

In the same manner the equation for y,,_, can be derived. Thus the proof
of Lemma 3.4 is complete. |

Given p, and p'® Lemma 3.4 can be used for computing all even
derivatives p!) (v=0, 2, .., m—2). In order to calculate p!™ " (i=1, .., N)

&™) must be fixed. For example one can demand

(m—1) _ k—m+1 (k - (k) k)
ps” = Z e (Ck,1P2)+2ck,0P(1 +Ck,1Pé>)
Ogshksm—4
k even

(e 21 P8 H (Cpon ot ) pi"™?
+(Cpo21— 1) p" V. (3.15)

ExXAMPLE. m =6. Let

pix)= Z a6 Ax—x;)"

5)

yi=p, M, :ZPE'Z), Si:P£'4)’ Fi:Pf'
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Then the coefficients a; of p; are given by

1
ai,0=_—_3(si+1 S)— ;= F;:

360n L 120

_ 1 S __1 M M k 55 /TZF
Aia=7-1, Gi.s—a( i1 ,)—ﬁ( i1 H38)— 72

h
ai.S:Z(J’Hl_J‘i)_g(Mi+1+2Mi)

+—C(4S +118)+ Ly
360 L itl 1207
ai,B :}';‘; (l = 0, ey N)v

The formulas of Lemma 3.4 are

) h .
(i1 =2y, +}’1—1)—g (M, +4M,+ M, )

I -

3 4

A
+36g 4Si- 1 168, 4108, ) + o (F+ Fo ) =0 (316)

1 h
7](A’Ii+l“2Mi+Mi-—1)'—‘1—2'(Si+l+SSi+3Si~1}

_F
2

(F,+F,_)=0 (3.17)
2 : . ‘a0
S(S =S )= (F+Fio)=0  (i=1,.,N). {3.18)
We insert formula (3.18) in (3.16) and (3.17) and obtain
%( Vigg— 2V Vi) — (M,+1+4M +M._

3

+3‘6(5(4S"“+225’+45'-1)=0 (3.19)

1 ) . \
,;(M,-+1—2M,-+M,-\1)-1—’2<5,+1+los,-+s,-_l;=o

(i=1,..N). {3.20}
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Hence (see also Usmani [7, p. 160])

20 2 .
Si=;174‘(yf+1—2)’i+}’i—1)_'3713 (M +28M,+ M,;_,) (i=1,..,N)
(3.21)

So and S, ., can be computed from formula (3.20). F, is given by (3.15),

Fo=—=(y:— 2y, +yo)——5 (M, +4M, + M)

6/13

+ 3607 (7152 + 3768, = 353S,),

and F; (i=1, ..., N) by (3.18). Thus all values for computing the coefficients
a; are known.

4. APPLICATION TO SPLINE COLLOCATION

We give an example, where the Hermite-Birkhoff problems (1.1) and
(1.3) play an important role.
Consider the two-point boundary value problem

y'(x)=1(x, y(x))
ya)=4 (4.1)
y(b)=

where fis a real-valued bivariate function and 4, B are given real numbers.
A frequently used method for solving (4.1) numerically is the method of
collocation: A spline function s€ S,,{4) is looked for such that

s"(x)=f(x; 8(x;))  i=0,., N+1
sla)=4 (4.2)
s(b)=18B

In [4] we showed that discrete values s(x;) (i=0,..,N+1) can be
obtained by the solution of the nonlinear system of equations

Z b(z) S(Xppvo1)= 2 b (w15 8(X0 1))

pu=1

(v=0,.,N—m+2)
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if m is odd and

m—1

z Z _1)# Gb(Z) S( u+v—1)

pu=1o0c=1

m—1

Z Z _l)uidbm,(;f(xu-{—v—hS(x,u+vfi))

u=1o=1

(v=0,.,N—m+1)

if m is even. If u denotes the exact solution of (4.1), then the speed of
convergence is given by

max | u(x;)—s(x,)| = O(h™),

IgigshN

where ii=m if m is even and m=m—1 if m is odd.

Now a global solution of (4.2) (i.e., the coefficients of a basis) can be
calculated by the methods of Section 3. Furthermore it can be shown that
the approximate solution s converges uniformly to the exact solution » of
(4.1) with the following rate of convergence:

max |u"(x)=sUx)=0Hh" """ (v=0,..m—1}

xefa, b}

For details, see [4, p. 70-79].

CONCLUDING REMARK

It is quite easy to generalize the results of Sections 2 and 3 in order to
solve Birkhoff problems of the type

s(x)=y;
Ky ) = 30
sE ) =yl
seS,(4),
where y;, p*) are given real numbers and k is a given positive integer.
These generalizations can be used for solving boundary value problems of

the form y*'(x)=f(x, y(x)). Special cases are treated in the papers of Isa
and Usmani [3] and Usmani [6].
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